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Abstract

For Convolutional Neural Network-based object detec-

tion, there is a typical dilemma: the spatial information is

well kept in the shallow layers which unfortunately do not

have enough semantic information, while the deep layers

have a high semantic concept but lost a lot of spatial in-

formation, resulting in serious information imbalance. To

acquire enough semantic information for shallow layers,

Feature Pyramid Networks (FPN) is used to build a top-

down propagated path. In this paper, except for top-down

combining of information for shallow layers, we propose

a novel network called Image Pyramid Guidance Network

(IPG-Net) to make sure both the spatial information and se-

mantic information are abundant for each layer. Our IPG-

Net has two main parts: the image pyramid guidance trans-

formation module and the image pyramid guidance fusion

module. Our main idea is to introduce the image pyramid

guidance into the backbone stream to solve the informa-

tion imbalance problem, which alleviates the vanishment of

the small object features. This IPG transformation module

promises even in the deepest stage of the backbone, there

is enough spatial information for bounding box regression

and classification. Furthermore, we designed an effective

fusion module to fuse the features from the image pyramid

and features from the backbone stream. We have tried to

apply this novel network to both one-stage and two-stage

detection models, state of the art results are obtained on

the most popular benchmark data sets, i.e. MS COCO and

Pascal VOC.

1. Introduction

Recently, with the development of deep convolution neu-

ral networks, there have been abundant CNN based methods

∗corresponding author

focusing on object detection tasks since the emergence of

typical networks of Faster-RCNN [26], YOLO [25], SSD

[20], RetinaNet [16] etc. However, object detection still

suffers from some problems, such as the key problem of

information imbalance of different feature scales. Because

the convolution neural network is designed to output a sin-

gle output for classification, not for the multi-scale tasks.

Some works have tried to fix this imbalance, such as

the most popular Feature Pyramid Network (FPN), which

mainly fixed the problem of lacking high semantic informa-

tion in shallow layers.

Although feature pyramid network can supply the se-

mantic information for shallow features, there are still fea-

ture misalignment and information lost in deeper features,

which is especially harmful for small object detection. Fea-

ture misalignment refers to that there are some offsets be-

tween anchors and convolution features.

In this paper, we argue that good feature extractor for de-

tection should have two common features: i) enough shal-

low image information for bounding box regression because

object detection is a typical regression task. ii) enough se-

mantic information for classification, which means the out-

put features come from deep layers. To satisfy these char-

acters above, we introduce a novel network specific for ob-

ject detection, namely, the Image Pyramid Guidance Net-

work (IPG-Net). The IPG-Net includes two main parts: the

IPG transformation module and the IPG fusion module, as

shown in Fig. 1. The IPG-Net is designed for extracting

better features by fixing the information imbalance problem

better.

The deep convolution network will cause the loss of the

location or spatial information as the layer becomes deeper.

This property maybe not a problem for the classification

task, while bounding box regression is important for the de-

tection task. But, the loss of such spatial information re-

sults in the features misalignment in object detection. Here,

feature misalignment means there are some offsets between
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Figure 1. The overall structure of the IPG-Net, including two main parts: IPG transformation module and the IPG fusion module. The

input is an image pyramid {Ii}. The green part (IPG transformation module and IPG fusion module) is what proposed in this paper. The

blue part is the multi-scale feature pyramid outputs {Pi}.

anchors and convolution features. Besides the loss of spa-

tial information, small objects will easy to be lost in the

deeper convolution layers. We argue that all these problems

for object detection are due to the limit of the existed con-

volution network structure and can’t be fixed by just simply

modifying typical networks’ architecture.

Here, we introduce the image pyramid to supply more

spatial information into each stage of the feature pyramid

of the backbone network. Then the mentioned problems

can be reduced in this way. For each stage of the backbone

network, we compute the image pyramid feature of the cor-

responding level in the image pyramid. The image pyramid

feature is obtained from a shallow and light-weighted IPG

transformation module, which has more abundant spatial in-

formation, especially for small objects, compared with the

deep backbone. Then we design an IPG fusion module to

fuse the new image pyramid feature into the backbone net-

work.

The fusion module performs two steps to fuse the two

kinds of features. Firstly, we transform the original features

to align the data size and project them into a hidden space.

Secondly, We use common mathematics operations to com-

bine the two features. Sum, product, and concatenation are

all used in our experiments and improvements of different

degrees are obtained.

Before going deeper into our proposed methods, we

summarize our contributions as below:

• We introduce the image pyramid guidance (IPG) into

the backbone stream(network) to fix the spatial infor-

mation and small objects’ features lost problem in deep

layers.

• We design a new shallow IPG transformation module

to extract image pyramid features, which is flexible

and light-weighted.

• We also design a flexible fusion module, which is sim-

ple but effective.

2. Related Work

Object detection is a basic task for deeper visual rea-

soning or visual understanding. The state-of-the-art works

based on deep learning for object detection can be clas-

sified into one stage model and two-stage model(Faster

RCNN[26], Cascade RCNN[1], SNIP[29],SNIPER[30]

etc.), and one stage model can be further be classified into

anchor-based methods(Retina net[16], Yolo-v3[25] etc.)

and anchor free methods(Center net[5], FSAF[34] etc.). All

of SOTA models are based on the 3 branches, two-stage

methods are easier to achieve slightly better results while

one stage methods have faster speed in practice. There are

also some works about design backbone network specific

for object detection as what we do here, Detnet is some of

them[14].

2.0.1 Two stage detector

Two-stage algorithms keep the state of the art results in most

popular data sets, such as MS COCO[17], Pascal VOC[6].

However, they also suffer from the speed limit and the huge

complexity of the model building. The information imbal-

ance is also a tough problem for two-stage algorithms, al-

though there are some works reduce the imbalance impact

to some degree, such as feature pyramid network[15], this

is still an unsolved problem.



2.0.2 One stage detector

To achieve faster inference speed, a lot of one stage algo-

rithms were proposed and achieved as good performance

as two-stage models. The initial SOTA one stage mod-

els are based on anchor mechanism, but more efficient al-

gorithms of anchor free are proposed recently. The most

typical works including center net which motivated by

key point detection[5], WSMA-Seg which is motivated by

segmentation[2], FSAF[34]. Unfortunately, the informa-

tion imbalance and the feature misalignment also impact

the one-stage methods’ performance, especially the anchor-

based detectors.

2.0.3 Information imbalance and Feature alignment

There are also some works to solve the imbalance problem

at the feature level. PANet [19] added a bottom-up path

on previous FPN to shorten the information propagate path

between lower features and the topmost feature. Pang etc.

proposed Libra R-CNN which contains a balanced feature

pyramid to reduce the imbalance in feature level, i.e. the

outputs of the feature pyramid network(FPN) [22]. EFIP

[23] introduced an independent network to extract features

from images of different resolution, and then fuse these fea-

tures with the standard SSD [20] outputs. Although they

use an image pyramid as input, they only modify the final

output layer of SSD [20]. As we discussed above, informa-

tion imbalance and misalignment problems happen inside

the backbone network. To solve that, we let IPG-Net con-

tinually fuse the image pyramid information into the back-

bone stream. All of the works above are trying to fix the

imbalance and misalignment problem, but there is still no

one that can solve the problem completely in object detec-

tion. Here we propose a novel network, IPG-Net, which is

based on an image pyramid. Fusing the image pyramid into

the detection backbone to solve the information imbalance

problem is a new path.

3. Image Pyramid Guidance Network(IPG-

Net)

3.1. Challenges to be Solved

FPN reduces the information imbalance of features of

different scales to some degree, but there are still challenges

waiting to be solved. we summary these challenges in this

section.

3.1.1 Anchor Misalignment.

Although deeper CNN enables better semantic features to

be extracted, it also blurs these features. The location of

objects in deep features is not always aligned with the loca-

tion of those objects in original images. But anchor-based

detection algorithms follow the assumption that the location

of objects in any feature is aligned with that in correspond-

ing original images [16, 26, 24, 25]. Therefore, there is a

serious misalignment between the anchor and the convolu-

tion features. This phenomenon becomes more serious with

the increase of CNNs depth [22].

3.1.2 FPN Misalignment.

Feature pyramid network fuses deep features to the corre-

sponding shallow features to alleviate the information im-

balance problem. However, because deep CNN backbone

already causes anchor misalignment in deep features, The

fusing of FPN can’t make the right alignment between deep

features and corresponding shallow features. For exam-

ple, without image pyramid guidance, because there is al-

ready misalignment problem between feature R2 and fea-

ture R1 as mentioned in the last section, the feature P1 =
upsample(P2) + Conv(R1) will also suffer the misalign-

ment problem.

3.1.3 Feature Vanishment for Small Objects.

Deep CNNs achieve high performance in classification due

to the large stride of 32 respecting to initial image size.

However, large stride also leads to the miss of the detailed

information of the input image, i.e. the small object infor-

mation. Small object detection depends on detailed infor-

mation. Therefore, we usually detect small objects with

shallow layer’s features. But these features lack semantic

information. Using feature pyramid network (FPN) to build

a top-down path to supply semantic information for shallow

layers’ features is essential. Although FPN improves the

detection difficulty in shallow layers to some degree, there

is still a serious loss of those small object information. Be-

cause this detail information of small/tiny objects has been

largely damaged in the deep layer of CNN backbone. This

is also why we propose to supply shallow layer information

to deep layer with image pyramid guidance (IPG).

3.2. Overall Structure

The overall structure of the image pyramid guidance net

(IPG-Net) is shown in Fig. 1. IPG-Net is modified from the

traditional backbone network, such as ResNet [10], which

could provide a fair comparison with the existing methods.

There are two main parts in IPG-Net: IPG transformation

module, IPG fusion module.

The IPG transformation module accepts a set of images

of different resolutions from the image pyramid and extracts

the image pyramid features for fusing. The function of the

IPG transformation module is to extract shallow features to

supply spatial information and detail information. The im-

age pyramid features are used to guide the backbone net-

work to reserve spatial information and small objects’ fea-
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Figure 2. The structure of the IPG transformation module of level

i, i ranges from 1 to N−1, N is the total depth(stages) of the back-

bone. The IPG transformation module has different parameters at

different levels. The output feature’s channel dimension of level

i is (C1 × 2i), C1 is usually 256 if using a ResNet50 backbone.

This channel dimension is consistent with the backbone feature.

tures. Furthermore, We use a fusion module to perform the

guidance. The IPG fusion module’s function is to fuse the

deep features of the backbone network and the shallow fea-

tures of IPG transformation module, the formulation and

variants will be discussed in the next section. The idea of

the IPG fusion module is to make a transformation of the

two types of features firstly and then fuse them together to

achieve an augment effect for the object detection, espe-

cially small/tiny object detection.

3.3. IPG Transformation Module

Traditionally, an image pyramid is used to obtain multi

scales feature to reduce the influence of image scale, be-

cause the CNN lacks the scale-invariant ability. Usually,

The performance of most models can be significantly im-

proved in this way, but the computation cost is also too large

to afford in the training stage, especially for a deep CNN.

Different from the traditional method, in this paper, we use

the image pyramid to guide the backbone network to reduce

the information imbalance problem and learn better detec-

tion features. Better features mean that these features of

different scales have both abundant spatial information and

enough semantic information, i.e. there are no serious fea-

ture misalignment and information imbalance.

The input of the IPG transformation module is an image

pyramid set IPset = {Ii}, i ∈ [0, N). The image resolu-

tions of images in IPset decrease with 2 times. The first
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Figure 3. Three instances of the fusion module, (a) is the sum-

up strategy, (b) is the concatenation strategy, (c) is the residual

product strategy. All of them are the variants of the Eq. 1.

image is I0 with H×W resolution which is the same as the

commonly used image resolution of object detection. N is

the number of levels of the image pyramid. We set N = 4
in our experiments to be consistent with the depth of a stan-

dard ResNet.

Next, we will introduce the typical structure of the IPG

transformation module, as shown in Figure 2. The struc-

ture of IPG transformation module is component with two

parts, one is a 7 × 7 convolution followed with a 2 × 2
max pooling, another is a residual block, which is similar to

the residual design in [10]. The residual block accepts fea-

tures of the same dimensions but outputs features of differ-

ent dimensions, the output dimension of features are aligned

with that of the backbone network. There are two main rea-

sons why we use a shallow sub-network to extract image

pyramid feature. On the one hand, the shallow layer could

reserve more spatial information/detail information, while

deep CNN will damage this information. On the other hand,

the computation cost and the number of network parameters

will not increase too much because of the shallow and light-

weighted design.

Each component of the outputs of the IPG transforma-

tion modules IPFset = {Fi}, i ∈ [0, N) can be formu-

lated as: Fi = f(Ii), i ∈ [0, N). where the f(·) de-

notes the IPG transformation module, as shown in Figure

2, Fi denotes the image pyramid feature of the level i.

Those features Fi from different level of image pyramid

IPset = {Ii}, i ∈ [0, N) form new image pyramid fea-

tures set IPFset = {Fi}, i ∈ [0, N) .

3.4. Backbone Network

The backbone network of IPG-Net is modified from

the standard ResNet which contains four stages (stage1-

stage4). In this paper, We add new stages at the end of stan-

dard ResNet, each new stage contains two Bottleneck mod-

ules, same as ResNet. Our ablation studies suggest adding

one new stage can perform better than the other conditions.



Too deep backbone network also is harmful for the detec-

tion, We argue that the backbone which is too deep has dif-

ficulty for training, similar to the classification task.

The reason why we use a deeper convolution network

than the standard ResNet is that the IPG transformation

module supplies enough spatial information/detail informa-

tion into the backbone network, which promises we could

train a deep CNN without much information imbalance or

misalignment. A deeper backbone network enables us to

generate better semantic information which is good for the

classification and could cover a larger range of object scales.

3.5. IPG Fusion Module

3.5.1 Formulation

The IPG fusion module in this paper is a flexible module,

we first formulate it as follows. The f(·) and g(·) corre-

spond to the network of IPG transformation module and

backbone network separately. The function of β can be flex-

ible with different versions.

Oi = β(fi(Ii), gi(I0)), i ∈ [1, N − 1] (1)

where Oi is the output feature the of fusion module in level

i, as shown in Figure 1. I0 and Ii are images in the image

pyramid in level 0 and level i separately. The β(·) denotes

the basic fusion function of the fusion module. The fi(·) de-

notes the output of the IPG transformation module in level i

and the gi(·) denotes the output Ri of the backbone network

in level i. The number of levels N is determined by the size

of image pyramid IPset.

The position of IPG fusion module in IPG-Net is shown

in Figure 1. For each IPG fusion module, There are two

inputs, the image pyramid feature Fi and the corresponding

backbone feature Ri. Further, We propose several different

variants of IPG fusion module to demonstrate the effective-

ness of image pyramid guidance. Sum, Product, and Con-

catenation are the three types of fusion modules we used

in our experiments. The other similar design of the fusion

module will also work well, such as the attention-based de-

sign, but we will not focus on that in this paper. we will

follow this idea in our future work.

Next, we will describe the details of three types of vari-

ants.

3.5.2 Element-wise Sum

For this version, we regard the image pyramid informa-

tion as additional information. Therefore, the goal is to

sum the image pyramid feature Fi and backbone feature

Ri together. Firstly, we need to align the channel di-

mension of these two types of features. Here, we use

channel-dimension linear interpolate operation to perform

the CT (channeltransform).

Oi = W · [Ws · CT (Fi)) +Wm ·Ri)] (2)

Where the W,Ws,Wm denotes different linear transforma-

tions.

3.5.3 Residual Product

Here we use the dot product Ws · CT (Fi)) ∗ Wm · Ri to

represent the lost information in backbone feature Ri. After

adding the lost information into backbone feature, a "layer

norm" operation is performed to normalize the fused feature

Oi.

Oi = LN{[Ws · CT (Fi)) ∗Wm ·Ri] +Ri)} (3)

Where the LN denotes the Layer Norm operation.

3.5.4 Concatenation

We also try to use concatenation operation to realize the fus-

ing of the image pyramid feature and the backbone feature,

which is similar to the fusing operation in U-net[27]. The

formulation is shown as following.

Oi = W · Cat[Ws · CT (Fi),Wm ·Ri] (4)

Where the Cat denotes the concatenation operation.

4. Experiments

4.1. Experiment Details

Datasets. We conduct ablation experiments on two data

sets, MSCOCO[17] and Pascal VOC[6]. MSCOCO is the

most common benchmark for object detection, the COCO

data set is divided into train, validation, including more than

200,000 images and 80 object categories. Following com-

mon practice, we train on the COCO train2017(i.e. trainval

35k in 2014) and test on the COCO val 2017 data set(i.e.

minival in 2014) to conduct ablation studies. Finally, we

also report our state of the art results in MS COCO test-dev,

the test is finished in CodaLab1 platform.

We also apply our algorithm on another popular data

set, Pascal VOC. Pascal VOC 2007 has 20 classes and

9,963 images containing 24,640 annotated objects and Pas-

cal VOC 2012 also has 20 classes and 11,530 images con-

taining 27,450 annotated objects and 6,929 segmentation.

We train our model with Pascal VOC 2007 trainval set and

Pascal VOC 2012 trainval set and test the model with Pascal

VOC2007 test.

Training. We follow the common training strategies

for object detection, 12 epoch with 4 mini-batch in each

GPU. All of the experiments are conducted in 8 NVIDIA

P100 GPUs, optimized by SGD(stochastic gradient de-

scent) and default parameters of SGD in pytorch framework

1https://competitions.codalab.org/competitions/20794



model backbone AP AP50 AP75 APS APM APL

Two Stage Det

R-FCN[3] ResNet-101 29.9 51.9 - 10.8 32.8 45.0

Faster RCNN++[10] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster RCNN w FPN[15] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

DeNet-101(wide)[8] ResNet-101 33.8 53.4 36.1 12.3 36.1 50.8

CoupleNet[35] ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8

Deformable R-FCN[3] Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5

Mask-RCNN[9] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2

Cascade RCNN[1] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

SNIP++[29] ResNet-101 43.4 65.5 48.4 27.2 46.5 54.9

SNIPER(2scale)[30] ResNet-101 43.3 63.7 48.6 27.1 44.7 56.1

Grid-RCNN[21] ResNeXt-101 43.2 63.0 46.6 25.1 46.5 55.2

Anchor based One Stage Det

SSD512[20] VGG-16 28.8 48.5 30.3 10.9 31.8 43.5

YOLOv2[24] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

DSSD513[7] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

RetinaNet80++[16] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

RefineDet512[32] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4

M2Det800 VGG-16 41.0 59.7 45.0 22.1 46.5 53.8

Anchor Free One Stage Det

CornetNet511[13] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

FCOS[31] ResNeXt-101 42.1 62.1 45.2 25.6 44.9 52.0

FSAF[34] ResNeXt-101 42.9 63.8 46.3 26.6 46.2 52.7

CenterNet511[5] Hourglass-104 44.9 62.4 48.1 25.6 47.4 57.4

IPG RCNN IPG-Net101 45.7 64.3 49.9 26.6 48.6 58.3

Table 1. The state of the art of the performance on the MS COCO test-dev, ’++’ denotes that the inference is performed with multi-scales

etc.

model fusing strategy APS APM APL

IPG RCNN sum 20.8 39.6 46.2

product 18.9 36.3 43.4

concatenation 19 35.5 42.6

Table 2. The ablation study of the fusion module on the MS COCO

minival.

are adopted. The learning rate is set as 0.01 at the begin-

ning and decrease by a factor of 0.1 in epoch 7 and epoch

11. The linear warm-up strategy is also used, the number

of warm-up iterations is 500 and the warm-up ratio is 1.0/3.

All of the input images are resized into 1333×800 in COCO

and 1000×800 in Pascal VOC, which is consistent with the

common practice. The image pyramid is obtained by down-

sampling(linear interpolate) the input image into four levels

with a factor of 2.

Inference. The image size of the image pyramid keeps

the same with the training stage. The IOU threshold of

NMS is 0.5, and the score threshold of the predicted bound-

ing box is 0.05. The max number of the bounding box of

each image is set as 100.

4.2. MS COCO

4.2.1 Which fusing strategy is better.

We propose three different strategies to fusing the fea-

tures from the image pyramid and the features of the back-

bone network in this paper. To compare the effectiveness

and the difference of them, we perform different strate-

gies in the same baseline and report the AP of small, mid-

dle and large objects separately. The results in Table. 2

shows that all three versions have similar results for small

objects(20.8vs18.9vs19), but the results for middle objects

and large objects have large margin(2% − 4%) between

them. Table. 2 shows that the sum operation achieves much

better performance in all metrics. We argue that the sum op-

eration is more suitable for IPG fusion, while product and

concatenation are more tricky. Therefore, we perform the

rest experiments with a sum fusion module.



4.2.2 How deep is better for the IPG-Net.

model N stages mAP AP50 AP75 APS APM APL

IPG RCNN 4 35.4 57.9 37.8 21.2 39.2 44.9

5 35.7 58.2 38.2 21.1 39.6 45.7

6 35.7 58.2 38.3 20.8 39.3 45.8

7(keep) 35.7 58 38.3 21 39.6 45.8

Table 3. The ablation study of the depth of the backbone of IPG-

Net on the COCO minival, 7(keep) denotes the depth of backbone

is 7 stages and the spatial size of those features of the last 3 stages

keeps constant.

The Table. 3 shows that the mAP is not always increas-

ing with the increase of the depth, and we also notice that

the improvement comes from the large objects, while the

small objects slightly decrease, 0.3%(21.2vs21.1vs20.8).
This observation is consistent with the assumption in this

paper, shallow layers features are more important for small

objects. We also study the effect of keeping the spatial

size of the last 3 stages, as the [14] proposed. The results

show that there is a slight improvement for small objects

(20.8vs21) and middle objects (39.3vs39.6), but the per-

formance improvements in mAP is not significant. Con-

sidering the computation cost and the model performance,

the depth of 5 stages is the best choice for the IPG-Net.

Here, we construct the IPG RCNN with a 4 levels IPG-Net

and a Faster RCNN head.

4.2.3 The position of the IPG fusion.

Here we conduct ablation experiments using an IPG-Net

and a ResNet with 4 stages. Firstly, we only add one image

pyramid feature into the backbone network. Secondly, we

increase the level of the image pyramid to find out if more

levels are better. The Table. 4 shows that IPG-Net with dif-

ferent configures all achieve slight improvement compared

with baseline ResNet. The best mAP of them is 36.6%,

which is only 0.1% improvement from the others. We con-

clude that the IPG-Net is not sensitive enough for the po-

sition of IPG fusion. All in all, IPG-Net indeed improves

detection performance.

4.2.4 The effect on deep layers.

As we claimed in this paper, the function of image pyramid

guidance is to supply the spatial information and the im-

age details information of small objects into deep features.

Here, we conduct a simple comparison experiment to prove

the effectiveness of IPG in deep layers. The configuring of

the experiment is simple but persuasive. The depth of the

IPG-Net and the ResNet are 7 stages but we only use 4 out-

puts of the last four stages, which are all deep features, with-

out enough detail information as we claimed. The detector

stage1 stage2 stage3 stage4 mAP AP50 AP75

- - - - 36.3 58.1 39.0

✓ - - - 36.5 58.4 39.3

- ✓ - - 36.2 58.1 39.0

- - ✓ - 36.6 58.4 39.4

- - - ✓ 36.5 58.4 39.2

- ✓ ✓ ✓ 36.5 58.4 39.4

Table 4. The ablation study of the position of the fusion module in

IPG-Net, we add only one fusion module into one stage and also

add multi-modules into multi-stages.

model mAP AP50 AP75 APS APM APL

IPG-Net 23.9 40.2 24.8 4 28.7 39.9

ResNet 23.6 40.2 24.2 3.9 28.3 39.3

model AR AR50 AR75 ARS ARM ARL

IPG-Net 23.7 36.2 38.5 12.4 43.1 60.9

ResNet 23.4 35.7 38 12 42.3 60.7

Table 5. The effect of IPG in deep layers on the COCO val based

on RetinaNet-50.

we use here is RetinaNet[16], whose performance highly

relies on the scale of the feature pyramid.

The Table. 5 shows that IPG-Net achieves higher perfor-

mance than ResNet backbone in almost all metrics. The in-

crease of AP reaches 0.6%(24.8vs24.2, 39.9vs39.3). The

results of Table. 5 also suggest that the IPG-Net works well

as the feature extractor of the RetinaNet[16](a one-stage de-

tector). We also notice that the IPG makes more contribu-

tion to RetinaNet(0.6%) than on Faster RCNN (< 0.6%).
We argue that’s because the two-stage model prefers to per-

form ROI Pooling in shallow layers’ features while the one-

stage models consider more deep features.

4.2.5 Comparison with the state of the art results in

MS COCO test-dev

Finally, we also test IPG RCNN in MS COCO test-dev to

make a comparison with the state of the art detectors. We

construct a modified IPG RCNN with an IPG-Net101 and a

cascade RCNN head[1]. To reduce the cost and parameters,

we choose stage 3 as the level to perform IPG, because the

IPG-Net is not sensible with the position of IPG fusion, as

mentioned above. The depth of the IPG-Net is four stages

to make full use of the pre-trained parameters of standard

ResNet in ImageNet. The IPG RCNN achieves 45.7mAP

in MS COCO test-dev, which is the state of the art result

compared with other object detection models under the con-

dition of single scale inference.



model backbone input size mAP

Two Stage Det

Faster RCNN[10] ResNet-101 1000x600 76.4

R-FCN[3] ResNet-101 1000x600 80.5

OHEM[28] VGG-16 1000x600 74.6

HyperNet[12] VGG-16 1000x600 76.3

R-FCN w DCN[4] ResNet-101 1000x600 82.6

CoupleNe[35]t ResNet-101 1000x600 82.7

DeNet512(wide)[8] ResNet-101 512x512 77.1

FPN-Reconfig[11] ResNet-101 1000x600 82.4

One Stage Det

SSD512[20] VGG-16 512x512 79.8

YOLOv2[24] Darknet 544x544 78.6

RefineDet512[32] VGG-16 512x512 81.8

RFBNet512[18] VGG-16 512x512 82.2

CenterNet[33] ResNet-101 512x512 78.7

CenterNet[33] DLA[33] 512x512 80.7

Ours

Faster RCNN[26] ResNet-50 1000x600 79.8

IPG RCNN IPGnet-50 1000x600 80.5

IPG RCNN++ IPGnet-50 1000x600 81.6

IPG RCNN IPGnet-101 1000x600 84.8

IPG RCNN++ IPGnet-101 1000x600 85.9

Table 6. The state of the art of the performance on the Pascal VOC 2007 test, ’++’ denotes that inference is performed with three scales.

4.3. Pascal VOC

4.3.1 Comparison with the state of the art results in

Pascal VOC.

To valid the results more properly, we also test the new

IPG RCNN(based on Faster RCNN head [26]) in Pas-

cal VOC data set. The baseline is a faster RCNN

with the ResNet-50 as a backbone network, the perfor-

mance of the baseline Faster RCNN is much better than

the original paper[26], reaching 79.8%mAP . Then we

add the fusion module into stage 3 following the abla-

tion studies above to construct an IPG RCNN with an

IPG-Net50 and a faster RCNN head. The Table. 6

shows that the IPG-Net-50 obtains 80.5%mAP , we fur-

ther apply multi-scale inference strategy with the resolution

((800, 500), (1000, 600), (1333, 800)) to test the effort of

the IPG-Net-50, resulting in 81.6%mAP . Furthermore, to

keep consistent with the previous works, we also use a 101

layers IPG-Net to get the state of the art result, the IPG-

Net-101 is also fine-tuned with pre-trained parameters on

COCO data set. The results of single scale and multi-scale

all tested on Pascal VOC2007 test. Table 6 shows that IPG

RCNN101 achieves 84.8 with the single scale test and 85.9
with the multi-scale test.

Finally, the results on two popular benchmarks (MS

COCO and Pascal VOC) show that the IPG RCNN is ro-

bust enough and effective for small/tiny object detection.

5. Conclusion

The main problem we focus on is the information imbal-

ance and misalignment in object detection, especially for

small objects. There is a serious information imbalance be-

tween the shallow layer and the deep layer for the detection

backbone. In this paper, we propose a novel image pyramid

guidance network (IPG-Net), including the IPG transforma-

tion module and IPG fusion module. The main contribution

in this paper is we create a new path to alleviate the im-

balance and misalignment problem between the spatial in-

formation and the semantic information, fusing the image

pyramid information into the backbone stream. Abundant

ablation experiments have been conducted to demonstrate

the effectiveness of the IPG-Net. This work also can be ex-

tended to the video object detection task further with the

natural advantage of the image pyramid guidance. The IPG

fusion strategy could also be further investigated, attention-

based fusion strategy is a promising path.
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